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Analysisof the T ® (e + 2t;) Jahn-Teller problem for a
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Received 25 March 1994, in final form 29 April 1994

Abstract. The T & (e + 2tz) Jahn-Teller (;T) system is studied analytically in strong coupling
on a tetrahedral closter model by transformation methods. Using an energy minimizabion
procedure, the system is shown to be localized in potential-energy minima of tetragonal, trigonal
or orthorhombic symmetry depending upon the relative strengths of the e and the two t3 coupling
constants and on the guadratic coupling constants. The addition of an exira t; mode to the
T& (e+tz2) system does not introduce any extra potential-energy minima although their respective
depths are increased. Also derived are expressions for symanetry-adapted vibronic states and
their energies for the T®2tz IT system. Projection operator techniques are used starting from the
exact vibronic states in the tnfinite-coupling limit. These results give an insight into the effect
of including additional modes from the remainder of the erystal into the JT eflect, and hence
indicate how a full multimede model can be formulated. The calculation of symmetry-adapted
excited states means that it will be possible to undertake amalytical calculations of reduction
factors. This in turn will provide a new insight into the derivation of improved models for
explaining experimental data obtained on specific systems.

1. Introduction

In the Iast few years, several papers have been published that derive the vibronic ground and
excited states for certain Jahn~Teller (JT) vibronic systems in tetrahedral symmetry: Bates
and Dunn (1989) and Dunn (1989) for the T®e and T ®t; systems respectively; Hallam et
al (1992) for the T @ (e - t;) system; and Jamila et al (1993) for the E ® ¢ system. These
calculations have been based on a tetrahedral cluster model and have been evaluated using
a transformation technique developed originally by Bates er al (1987). These calculations
have been undertaken in order to obtain accurate basis states for the system and for the
subsequent modelling of magnetic impurity ions in semiconductor materials. The active
modes of this system are one of e and two of t; symmetry, and therefore the electrons of
the impurity can couple to vibrational modes of these symmetries. However, only one of
the t; modes has been considered in most previous publications, as the inclusion of both
modes is necessarily more complicated.

A much more general problem in JT theory is to consider the coupling of an ion to
the whole spectrum of phonon frequencies. This is frequently referred to as the multimode
problem, and has been the subject of much theoretical work during the last 25 years or so.
Much of this work has concentrated on the E ® e multimede problem in which the concept
of a privileged mode was introduced (e.g. Sloncjewsld 1963, Fletcher 1972, O’Brien 1972,
1983, Payne and Stedman 1983a,b,c). The multimode corrections to some of the Ham
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reduction factors were described, for example, by Evangelou et al (1980). O’Brien (1972)
also considered the general problem of an electronic Ty or T, triplet interacting with many
e and t; modes simultaneously provided there was an accidental degeneracy between the
e and t, modes, but there appears to be virtwally no work explicitly involving the T® ¢,
multimode problem. A method for studying the multimode problem for the T®e JT system
was introduced by Ham (1965) and a particular model was devised by Stevens (1969) and
developed further by Steggles (1977); this particular approach was summarized in Bates
(1978). An analysis and discussion of all multimode models is given in Bersuker and
Polinger (1989, sections 3.5, 4.6 and 4.7). In general, it may be possible to reduce the
multimode problem to that of a single effective mode for some properties of the system
{e.g. the potential energy), but for other properties inaccuracies are introduced. In particular,
if wavefunctions (particularly those of the excited states) are required, the kinetic energy
must be incorporated, and generally the problem cannot then be reduced to a single-mode
problem.

There is clearly a large gap between the simple cluster model used in the publications
listed in the first paragraph and the more realistic multimode models. In this paper, we
make an improvement in our simple cluster model by including coupling to the e mode
and both t; modes of the cluster. This represents a first step towards a multimode model,
whilst retaining the considerable advantage of the analytical approach. Thus we study an
ion having an orbital T, triplet state coupled to the e- and two tz-type cluster vibrations.
One of the t, modes is radial and the other is transverse (e.g. Bates 1978). It is assumed that
the coupling to the vibrations is larger than other perturbations such as spin-orbit coupling.
The transformation method presented criginaily in Bates et al (1987) is used. From the
analysis, the positions of the potential-energy minima in the eight-dimensional Q-space are
found. It will be shown that the addition of an extra t; mode does not introduce any extra
minima. The analysis gives descriptions of the T®e, T®2t; and T @ {e + 2t;) IT systems,

Whereas the positions of the minima for these systems could have been predicted from
the multimode theories of O’Brien (1972), for example, explicit forms of the excited vibronic
states could not be predicted from this source. The main advantage of the transformation
methaod is that accurate analytical expressions for the ground and excited vibronic states can
be obtained directly. This is not easy to do with other methods. Thus one of the major
aims of this paper is to derive the equivalent sets of vibronic ground and excited states for
the T; ® 2t; IT system to that for T®t. It will then be possible to use these to calculate the
various reduction factors that will appear in any effective Hamiltonian for real systems. For
example, it is hoped that the addition of the extra t; mode may help in overcoming some of
the difficulties arising in recent attempts at modelling the experimental results obtained for
V** jons in GaAs (Ulrici et f 1985) and in InP (Clerjaud er al 1987). Another probiem
is the interpretation of the optical spectrum observed for the GaP:V3* system; Bates et al
(1990) described a model for this system in terms of a dominant t» mode coupling.

2. Definitions and the unitary transformation method

In the cluster model of the IT effect for 2 T ( = 1) ion coupled linearly to an e (Qg, Q)
and two t (Q4, Os, Os; 07, O, Og) modes of the cluster, the interaction Hamiltonian has
the form

Hmt = VE(QGEB + QeEe) + V’I‘(Q4Tyz + QS sz + QGTxy) + VZ(Q‘.'T,V: + QSsz + Q?Txy)
2.1)
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where Vg is the e-type coupling constant and Vi and Va are the tp-type coupling constants.
The definitions of the orbital operators Eg, Ty., etc, are given in Bates (1978). The
Hamiltonian describing the kinetic and elastic energies of the harmonic lattice is

P2
oo =3 (ﬂ—’} + mw}Q}) (2.2)
I

where j is summed over all eight components of the vibrational modes and where P; is the
momentum conjugate to ;. This gives a total Hamiltonian H = Hin + Hyip-
A unitary transformation

U = exp (i > oy P,-) (2.3)
i

is then applied to the Hamiltonian and gives the transformed Hamiltonian
H=UTHU =H,+H, (2.4)
where

H = ~ 3R Ve(pecty — V3peae) + %\/gﬁ Vr{taes + 15005 -+ Toitg)
+ 1V/3rVa(Tay + 50 + Teato) + A2 Z piwlel + Z ho; (2.5)
i i

and

Ha = Vel Qs ~ v3p: 0c) ~ 1/3Vi(14 04 + 1505 + 7606)
— IV3V(24 Q7 + 15 Qs + 6 Q0) — D _Ryle; O+ 3 Ry (blB;). (2.6)
i i

These equations have been written in second quantized form (Maier and Sigmund 1984)
such that the orbital operators ¢ and t are given by

e = cJ{cl + c;cz - 2c§c:3 Pe = cIc[ - clcz @mn

Ty = C;C:; + c;cz Ts = c_Ecl + cic;.; Tg = cJ{cz + cgcl

where CIIO) = |x), etc, with |0} the orbital vacuum state and |x) the orbital state of the
stated symmetry. As in Bates et al (1987), H» contains terms representing coupling to
excited phonon states while 7, contains only electronic orbital operators (and the zero-
point energy). In strong coupling, which implies large «;, it is only necessary to consider
H, when calculating the ground states of the system. Thus it is appropriate to use the energy
minimization procedure described by Bates et al (1987) where the free parameters &; are
chosen to minimize the potential energy of the transformed Hamiltonian #,. Following on
from this analysis, it was found that vibronic ground and excited states of the system could
be derived so that physical properties of the system could be deduced.
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3. Analysis of 7{; for linear coupling

The Hamiltonian 7, can be defined with respect to the vibronic basis set |x; 0}, |y; 0} and
|z; 0}, where the second ‘0’ represents the phonon vacuum state, The corresponding matrix
can be written in the form:

_ [~Ast+3A+ A VB(As+4A9)  V3(As+Ag)
= [ V3(As+4s)  —Ag —3A+ A VB(As+ Aﬂ] G-
V3(As + Ag) V3(As+ A7) 240+ A

where A; = 1hVjj and A = Imi* 3 wla?. Also Vo=V = Vg, Vy=Vs = Vg = Vp
and V7 = Vg = Vo = V; with the w; similarly defined. It should be noted that the zero-point
energy

D she; = Jh[20 + 3(wr + @2)] (32)
4

can be ignored throughout the minimization procedure as it is a constant. The eigenvalues
E of (3.1) are found by solving the resulting cubic equation following the procedures used
in Bates et al (1987).

The values of the ¢; that minimize the energy may be obtained by differentiating E
with respect to the a;. This gives eight simultaneous equations, which can be solved exactly
(Kirk 1992) in terms of the effective coupling constants

Ke = —1(/2pws) " Vg Ky = L(3h/2pwu) P Vy (M =T or2). (3.3)

The lowest energy (i.e. possible solutions that are minima) falls into the three categories, I,
II and O as follows:

Category I. These are solutions for the case when the ion is coupled to the e-type vibrations
only. There are three minima in Q-space having energies

E = Ep = —4K2/hoz. (3.4)

This case is referred to as the T @ e IT problem and the solutions are exactly the same as
those obtained in Bates et al (1987).

Category II. The ion is coupled to both sets of tz modes of vibration. In this case, there are
four minima each with an energy given by

E = Egr = —4K2 /3hor — 4K2 [3he,. (3.5)

This is referred to as the T ®2t; JT problem. This result could have been predicted from the
original work of Opik and Pryce (1957) and from the formulae in O’Brien (1972). It can be
seen that, as far as the positions of the energy minima are concerned, the T @t problem is
the limiting case of the T ® 2t; JT problem in which one of the coupling constants becomes
zero (but see also section 5.3). In general, we note that, in a tetrahedron, as one of the
t2 modes is radial and the other is transverse, it is probable that the two modes couple to
the ion with differing strengths. For example, it is expected that radial modes will couple
more strongly than transverse modes as this direction is one in which the electric potential
changes most rapidly with distance from the central nucleus.
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Category fII. In this case, the ion is coupled to the e-type and both ty-type vibrations of the
cluster, giving six orthorhombic solutions for the T ® (e + 2t;) IT system with energies

E = Eggr = —Ki/hwg — KE/hor — K} fhw,. (3.6)

These solutions are only true minima under special conditions involving quadratic coupling
(particularly bilinear) terms. Again, this result is consistent with that of O'Brien (1972).

From the expressions (3.4)—(3.6) for the energies, it can be seen that the system will appear
to be

(i) tetragonal if Eg < Egy, ie. for

3KE/hw > Kifhor + K2 /hor (3.7)
(ii) trigonal if Eg > Ea1, i.e. for

3K:/hawe < K2 fhor + K} /hon (3.8)

(iii) orthorhombic if Egar < Eg and Esr, which is only possible under certain conditions
of quadratic coupling (as discussed, for example, in the case of T® {e + t;) by Hallam et
al (1992)).

The energy minimization procedure shows that the number of possible minima is 13,
which is exactly the same as that obtained with coupling to only one of the t; modes.
However, the depths of the minima are increased and the coordinates «; of the minima
are in eight-, rather than five-dimensional Q-space. The o; for j = 6,¢,4,5 and 6
are the same as those given in table 1 of Bates et al (1987) while the o; for j = 7,8
and & are obtained from the corresponding values for f = 4,5 and 6 by replacing S
(= Vr/hpwl) by B (= szh,u,w%). By taking the calculated values of o; and substituting
these into equations (2.5) and (2.6), it can be seen that H, is proportional to KJ? [fe; whereas

Mz is proportional to K, (where K; = Kg, K1 or K3 as appropriate). This justifies the
approximation that, in the infinite-coupling limit (X; — o0}, the transformed Hamiltonian
H, is small and can therefore be ignored.

Although the particular results obtained above are not significant in themselves, they
are important in a more general way because they are a first step to the more realistic and
complex case of a multimode model for the IT effect involving e- and ta-type vibrations. In
the limiting case of wr = w;, it has been found that the pesitions of the potential-energy
minima are in agreement with those of Opik and Pryee (1957) and subsequent workers (see,
for example, Bersuker and Polinger 1989). As stated previously, the states obtained using
this method have the advantage over previous approaches in that the states are automatically
vibronic in nature owing to the presence of phonon operators in the unitary transformation
(2.3).

4, The calculation of symmetry-adapted excited states for the Ty & 2t IT systemn

4.1. Basic ideas

In the transformation method, the Q; and P; are written in second quantized form

Q, = (/2p0;)'* (b + b)) Py = i(uen;/2)!2(b; — b) (4.1)
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where b} and b; are creation and annihilation operators. Similarly, the unitary transformation
in second quantized form is

U =exp ( > ciw - bj)) where Cy = —(3hua) ;. (4.2)
i

Also, H; becomes

Hy = —2Kg(peCs — v3pCe) — 2K1{taCys + 75Cs + 15C6)
— 2K3(z4Cr + 75Cs + 76Co) + 3 hayCl 13 hey. 4.3)
i i

The ground states localized in trigonal wells are ja; 0), ib; 0}, [c; O} and |d; O} where the
‘0’ denotes that all oscillators are in their ground states and where the orbital states take

the forms
a=\/g(x+y—z) b=\/§(x—y+z)

c=\/§—(—x+}’+z) d=\/§(-x—y-z)-

These states can then be transformed back to the original space by operating on them with
the wnitery transformation operator U = U, appropriate to well k, with the values of
appropriate to the well in question. Thus the untransformed state becomes

(4.4)

X%’ 0) = U1 x%; 0) (4.5)

and where X g‘” refers to one of the four potential-energy minima. Although the ground states

localized in the wells do not contain phonon excitations, the untransformed states | X g“’; 0)
do, owing to the presence of phonon operators in the unitary transformation. Therefore
the untransformed states are antomatically vibronic in nature and are often referred to as
Glauber states (Judd and Vogel 1975). In the limit of infinite coupling, the system performs
small harmonic oscillations around each minimum. In a similar way, a set of localized
untransformed excited vibronic states |X%&; 4/576"728807) can be defined, where 4/, etc,
refer to I ty-mode 4 phonon excitations, etc.

In the finite-coupling regime, these states are not good eigenstates of the system, as
they are neither orthogonal to each other nor do they have cubic symmetry. It is therefore
necessary to construct linear combinations of the states that have cubic symmetry and are
orthonormal. Cubic combinations have been obtained using projection operator techniques,
similar to those used for the E® ¢ (Jamila et af 1993), T® t; (Dunn 1989) and T® (e - to)
(Hallam et al 1992) JT systems. A discussion concerning the orthogonality of these states
is given in section 5.3.

4.2, Projection operator techniques

Using the appropriate group-theoretical projection operators, it is possible to take a set of
non-symmetrized states and produce a set of symmetry-adapted states. (A review of these
techniques is given in Hallam et al (1992).) To calculate the effect of one of the elemenis
of a particular projection operator, the transformation properties of both the electronic and
phonon parts of the states are required. In this connection, we note that, as this paper is
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modelling an impurity T) ion, the electronic states |x), |y} and |z} transform under the
symmetry operations of the Ty group in the same way as the angular momentum operators
(I:. Iy, I;) and not as the Cartesian operators (x, », z). Using these transformation properties,
we obtain results such as

ICla"; 4'5™6™1%8P9Y ) = —|a’; (~4)"5™ (—6)(—T)" 8% (—9)%)
= (=)t |y, 4r5mel7Y 88 97) (4.6)

where JC} is a symmetry operation of the Ty group. Similar resuits can be generated for
each of the other elements of the group.

As shown in appendix A of Hallam ez al (1992), if a state of arbitrary symmetry is acted
upon by a set of projection operators for a specific ireducible representation, then either
the resulting states are zero, meaning that there is no state of this particular symmetry,
or a basis state for the irreducible representation is generated. Owing to the symmetry
properties of the infinite-coupling excited states, it is only necessary to act on the states of
one well to produce a complete and distinct set of symmetry-adapted excited states provided
all the projection operators for that irreducible representation of the Ty group are used. This
approach has been applied to all the irreducible representations of the Ty group in order to
derive all the vibronic states [(blr} of the system having a symmetry I" and labelled by the
index { (= 1-30); details are given in Kirk (1992). The complete set of 30 states is given
in table 1, and restrictions on particular phonon occupation numbers necessary to produce
both states of the desired symmetry and each state once only in table 2. The vibronic states
are written in terms of the functional states

ITx' U m,n, 0, By)) =1 + (= 1)PHHRHr gl — (—pyrittety gl _ (pyemetbyl
4i5m6n7gPory 4.7
ITY ¢ m, n, 0, B,y)) = 10" (= 1) Frtetr g — (—qymibtatbel _ (pyrtmty+by,
4'5m6" 728897y (4.8)
T2 m, n e, B, 9)) = @’ + (= 1)FHerbal — (pymtitety - (_qymtmir iy,

4'5memegPory (4.9)
and

]E,(l, m,n,d, ﬁ1 }’)) — lan’ + (_ 1)m+n+ﬂ+]’b’ + (_1)n+1+a+]"c’ _ (_ 1)I+m+a+ﬁd’;
4'5marTeghory, (4.10)

Note that the states with i = 1,2, 3 and no phonon excitations give the cubic T, triplet
ground states of the system and the zero-phonon state with i = 20 gives the associated A,
inversion level.

In order to check that the restrictions on the phonon indices given in table 1 are those
which define each state once and once only, the number of vibronic states expected for each
representation has been calculated by group-theoretical techniques. The results are given in
the appendix and table 3. The number of states predicted in table 2 can then be shown to
be consistent with these results.
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Table 2. Restrictions on the indices.

Symmetry i Restrictions
T 1,2,3 m=npB=y
4,56 m=nf>y
7,.8,9 m=>n
T2 10, 11,12 m=n 8>y
13, 14,15 m>n
E 16, 17 I>mizn
18, 19 I=m=na>8a2y
Ag 20 l=m=nazpzvy
21 l>mizna=8=y
22 lom=na#p=y
23 l>m=npg>y
24 l=n>ma=p8#y
25 l=n>ma>y
Ay 26 Il=m=na>B8>y
27 lemm=npB>vy
28 Ilomm#Enlsnafya=y, &y
29 ismm#nl=na=fay. gy
30 I>m>n

Faile 3, Number of vibronic states of each irreducible representation. Row (A} applies if Nt/3
and Na/3 are integral; otherwise row (B) applies.

K even K odd
Nt even Nt add Nr even Nt odd
Ny even Nz odd N odd N3 even

R=N; R+2—> N+ R+2= N2+ 1 R=»MNz
S =Ny R+1—=> N +2 R+1 >+ Nop+2 S4+1— Np+2

S+l = Nr+2 8§ = Nt S22 = Np1
Symmetry S+2=Nr41
T HR+DE+DUR+DE + D+ 1]
T2 HR+DE+IUR+ DS+ D~ 1
E (A) %[(R+ DR+ 2D(S+ 1N(S+2)—4]

(B) (R + 1)(R +2)(5 + 1)(S + )]

A) (A) o {(R + 2)(S + 2)[(R + 1)(S + 1) = 3] + 8}
(B) % {(R +2)(S + (R + INS+ 1) = 3]}

Az (A) (R + 25 + DR + D(S+ 1) + 3] + 8}
(B} ﬁ {(R+2MS +2[(R+ 1S+ 1)+ 31}

Total (R4 1R+ 2)(S+ (5 +2)

4.3. The normalization factors

The basis states given in table 1 are not normalized. Normalized symmetry-adapted excited
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states can be written in the general form

W, mon, 0, B,9)) =N, m,n, 0, B, vl Comon,, B, 9)). (4.11)

In order to evaluate N;, the calculation of the overlaps (¢! |¢; ) is required. This in turn
requires the calculation of the overlaps of the excited states in infinite coupling. It is
necessary therefore to evaluate the expression

(ngl)'; chl)lxgz)'; Xg(z)} = (XgCIJIXgCZ)) (Xg')lU;, Ukz |X(If2)) (4.12)
where k) and k&, label states from different potential-energy minima (i.e. ‘a’, ‘b, ‘c’ or ‘d")

and x}i‘" refers to the phonon state in well k), etc. On substitution of the U/ values and
after using the identity

explk(b] — b;)] = exp(—14?) exp(kb}) exp(—kb;) (4.13)
this overlap may be simplified by

(Xgél)’; chl)lxgcz)'; X?}?)) — (Xgl)zxgz))szl
x <X§f‘) exp (Z D}k'k’)b}) exp (Z —D}klkz)bj)
i i

where D% — % _ % and the sum j is over all relevant phonon contributions. The
quantity Sz is defined by

Sy = exp ( -1 E(D}*’*ﬂ)z) (4.15)

J

Xﬁi‘*’) (4.14)

and takes the values

Sy — { expl—B[(Kr/hwr)? + (Kafhwp)®]}  when ky # ko
1

(4.16)
when &y = kz

when dealing with the T @ 2t; IT system. Thus (4.14) reduces to evaluating the phonon
overlap

<4‘5’”6”7°’8‘39V

exp (Z D}kxk:)b}) exp (Z _D;klk:)bj)
i i

As the phonon operators for the different modes commute, it is possible to separate this
expression into a product of the overlaps for each of the individual modes. For example,

for the Q¢ mode, we have, on expansion of the exponentials,
(6" exp(DF*b}) exp(— DI bg)16")
o0 kaka) p thi 00 (kikady, <R
(D{pl) (—DE* by \ |,
= (6" (Z o )
_ i (Déknkz))n+h—r(_Déklkz))h (n!.,.!)I/Z @19
by FR=DWT =D '

4!’546'713“9‘) . 4.17)

=0 h=0
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On substitution of the values of the D{* into the latter expression, the phonon overlaps
can be defined in terms of the function

m i 1/2 421
(—1¥ (min))!/2x% .
ifm>0andn >
Fuenm={ _ B T Dlatn-mi | "Z0MIRZ0 g
0 fm<lorn<0
where
Xy = 4Ky /30y (4.20)

with M = T when dealing with overlaps of the modes Q4, Qs, Qs and M = 2 when
dealing with overlaps of the modes ()7, (g, (g (this notation will be used throughout the
rest of this paper).

The orbital overlaps are straightforward to calculate and are given by the expression

1 ifky =k

if ky # ka. 4-21)

xixy =1 .

L
3

Hence, after much algebra, overlaps for the functional states (4.7) to (4.10) can be
determined. In particular,

(Tx'(l’ m,n, a8, }’)ITx’(P: g,7,x,0,T)) = 4apl'sqmamat;lr.l.aﬁo'ayr

(_ I)m+ﬂ+ﬁ+}'s_i_(q, r.m, n)Sé(cr, T, ﬁv Y)"Spfaal
— 35 [ —(=1)PHY S (p 1, n) Sy (M, T, ¢, ¥)8qmSps } (4.22)
_(_1)p+m+A+BS’ni‘(P, g, 1, m)Sé(A-’ ag, o, ﬁ)amay,r
(E’(Z, m,n, o, ﬁs }")IE’(Pn q.r, A’) a, t)) = 48p!5qm5m6u}.850'5}fr
(_l)m+r+ﬁ+rs’i‘(q: rom, n)Sé(U? T, 16» V)sp!5a1
— 45 | HDH S (D, 1 1L m)SHA, T, @, ¥)EgmSss (4.23)
F(=1)HmretrB gl (p g, I, m)SL(A, 0, &, BYSrSye
where
Sk i, § k) = XEE T Py, P Fu G, R, @.24)

It is a simple matter to determine the required normalization factors from these overlap
functions.

The functions §), are related to the functions Sy that appear in the calculations of the
overlaps for the T®t JT problem by the relationship § = —(4/3)$". It is possible to see how
the results above arise in relation to the single-mode result (Dunn 1989) by tracing the wells
from which each term arises. For example, the terms including 8,18, come from overlaps
between wells ‘ab’, ‘ba’, ‘cd’ and ‘dc’. The single-mode contribution for these wells is
—(4/3)(—1y"*"S'(g, r, m, n)5,. This must simply be multiplied by a second single-mode
overlap function with all labels permuted to the equivalent ones for the second mode, but
excluding the extra factor of —(4/3). This is because the one-mode function contribution
includes a factor of —(1/3) for the orbital overlaps and a factor of 4 because the term is
a sum over four different well combinations. Both considerations should only be included
once in a multi-mode problem. Such an analysis is useful, as it clearly indicates how results
could be obtained for a full multimode model.
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5. Energies of the symmetry-adapted states

5.1. General expressions

To calculate the energies of the symmetry-adapied excited states, it is necessary to evaluate
the matrix elements of H between the functional states {4.7)-(4.10). Consequently we write
H = Hint + Huip in second quantized form where

Hine = Krlta(b} +ba)+75(bL +b5) + 76 (bl +be)] + Kol ma (b4 by) + 15 (B + bs) + 76(b] +b5)]

(5.1)
and
Hp = § 3 By (bsb) + blby). (5.2)
§
It is necessary to evaluate matrix elements of the form
(X5 415m6" 798097 || X G 47576/ TH879T)
= (x%7; 4'5m6m 1988 9% |UT HU, |1X 5P 475767 78797) (5.3)
and this requires the use of the commutation relation
)
HUy = Uy (’H + 3 CP{-2K;7; + hooy (- (b] + b)) + c}k’]}). (5.4)

This relationship can be used, after a great deal of algebra, to evaluate the energies of the
functional states. However, many of the details of the calculations follow directly those for
the single-mode T & t JT problem (Dunn 1989). The functional energies are, in eifect, the
matrix elements for the single-mode problem with M = T multiplied by the overlaps with
M = 2 evaluated between the appropriate wells in the appropriate places, plus the same
with T and 2 reversed. This greatly simplifies the steps that need to be carried out for the
T & 2t problem, and allows the answers to be written down in a relatively straightforward
manner using the functions that appear in the T ® t problem. It also indicates clearly how
the multimode problem can be formulated.
The single-mode functions necessary to evaluate the functional energies are:

Hyl, b i, j, 1) = =3X5" 000 + 4+ 3) — 3X%1Fu(h, FuG, k)

+ Gulh, JYFa(i, k) + Gy (i, kY Fa (R, )} (5.5)
Gu(l,m) = X312 Py (I — 1,m)+ 0+ DYW2FyI +1,m) (5.6)
Kulp,g,r.l,m,ny = Jy(p,q,r,m,n}opqsy + Inll. g, 7. m, 0)8pany SN
Tl i, jk) = — XA EL G, Y P, B). (5.8)

Using these functions we can define the matrix elements of the functional Tx states as
(Ix'U,m, 0,0, B, YIHITX (P, g, 1,2, 0, 7))
- ETJ:(T) l: m, na P! Q: r;21 as ﬁ! V; A; a! r)
+ETx(2! aa ﬁ, }/r lfo" r; Ts li m,n, P;q' r} (5-9)
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where

Ers(M,l,m,n,p,g,r;N,e, B, V. 2,0,7T)
= Ry {4[(p + g4+ 2) — 2X3181p0mgSnrSardpo by
_‘(_l)p+n+y+l[HM(mi p.r l! n)fsqm - KM(Q1 prm, lr n)]S;\r(A-» T, &, }’)aﬁo

_(—1)p+m+‘\+'ﬂ[HM(n: p.q, L, m)p — Ky(r, p.g.n,1, M)]Sjv(l, o, o, ﬁ)'syt
(5.10)

[ (‘_l)m+.’:+,3+}'[HM(l, g,r.n, n}sﬂ[ -+ KM(p! g, f) m, n)IS;\.'(U: T, 5, }’)6:!).
+ Sn ] }

(Note the typographical error in Dunn (1989) in which the terms in 85, and §,; were written
in terms of the function J, rather than K.)
Similarly, the energies of the functional E states are

{E,([a m’ nv a! ﬁ! V)IHLE’(F’ q1 r‘ )" G’ r))
= Eg(T,!,m,n, p,g,r;2,0,8, ¥, 4,0,7)
+ Ee2, 0,8, v. Ao, T, L,mn,p,q,r) (5.11)

where

Eg(M,I,m,n,p.q,r; N, B, ¥, A, 0,T)
= hmM [4[(}7 + g +r+ %) - %X%Jaipamqanraa:ﬂ. 5,80'5?2'
(=D Hy o, pyr, 1L n)gm — Ky (g, porom, L) ISE G T, 0, )0,

+(_' 1)£+m+a+ﬁ[HM(n1 P! Q) l’ m)aﬂ! + KM (rv p: Q! n, Iv m)]S;\](A'v g, o, ﬁ)a}lt
(5.12)

l: (=Y gyl g, r,m, m)p, — Ku(p, g, 1.1, m, m)1Sy {0, T, B, ¥)om i| }
+ 8o

From these, the state definitions in table 1 and the normalization factors derived from the
functional overlaps (4.22) and (4.23), it is a relatively straightforward procedure to calculate
the energies of all of the vibronic states.

5.2. Energies of the ground states

It is possible to write down much simpler expressions for the energies of the T vibronic
ground state and its associated inversion level, as neither contain any phonon excitations.
After substitution of the normalization factors and relevant functions, the results are found

to be
4 (KE2 K2\ [9+7S
T3 Ram) — = ( 2L B2 2 A3
Fa' =g (hor +he) 9(ﬁa>r+ﬁw2)(3+32:) G
and
4 (K2 KI\[3-7S
A _ 3 R — = | 2L B2 2 5.14
EN = J0ar + o) 9(%*%)(1—&{) (5.14)

respectively. These results have an identical form to those of T® t (Dunn and Bates 1989)
provided K% /hor is replaced by (KZ/hor + K7 /he) and S, by Sx. However, it must be
stressed that these equivalences are not true in general.
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5.3. Resuits for the excited states

The energies of all vibronic states can be evaluated directly from the formulae guoted in
the tables, for any given input parameters. We present here the results for some specific
choices of parameters. For simplicity, only states with zero and one phonon excitation will
be considered, although the results are valid for any number of phonon excitations. It is
also useful to define a ratio of coupling strengths

1 = Vo/ Vr = (K2/ K1) (@2 /or)' 2. (5.15)

3.3.1. Case of equal frequencies. The simplest choices of parameters are when the
frequencies of the two modes are equal (@ = wy = @). Figures 1, 2 and 3 show the
calculated energies, relative to the T; ground state, with the parameter 5 taking values 0.1,
0.6 and 0.9 respectively.

Energy / hio

0.0 " 1 " J N 1 _‘-"_"‘_'l—-—q.

0.0 0.5 1.0 15 2.0
K,/ fo

Figure 1. Energies relative to the T ground state for » = 0.1 and wy = a7 = & with the key:
Ty, full curves; Tz, short dashed curves; B states and their accidentally degenerate Ty states,
medium dashed curves; Aj, long dashed curves.

When considering the special cases for which the frequencies of the two modes are

equal, it is useful to make an orthogonal transformation in (-space

gi = (Qi + 10:43)/(1 + pH? gis3 = (10; — Qiyn) /(1 + 1) (5.16)

for i = 4,5, 6 such that, when the coupling to the ¢ modes is neglected, the Hamiltonian
H = Hjy + Hyp given by (2.1) and (2.2) becomes {O’Brien 1994)

H = Vel + 1)@ Ty + G5Tox + 4Ty) + 5 )5/ 05 + 10939)) (5.17)
i

where p; is the momentum conjugate to ;. This indicates that the results obtained should

be identical to those of the single-mode T @ t; problem with an effective coupling constant

Vi = Vp(1+ )2 (5.18)
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Energy / fo

e

0.0 — L ! L :
0.0 0.5 1.0 1.5 20

K, /ho
Figure 2. Energies as in figure 1 but with n = 0.6.

2.0 - T . r . .

Energy / ho

070 1 ] I 1 i "
0.0 0.5 1.0 1.5 2.0

Ky o

Figure 3. Energies as in figure 1 but with n = 0.9,

rather than Vr, and with the addition of a set of energy levels due to an uncoupled t; mode.
The levels due to the vncoupled mode should include a set of levels at energy Ae relative
to the ground state, plus a T; (i.e. Ay ® T3) level that varies in epergy from 2hiw in weak
coupling to fiw in strong coupling, such that it remains fiw above the Aj inversion level.
Figure 1 (n.= 0.1) does show both a pattern of levels for the M = T modes that is
very similar to that for the single-mode T @ t; problem (figure 2 of Dunn 1989), plus a set
of levels due to the uncoupled mode as required. However, the levels that should be at hw
show noticeable deviations from this value when the coupling to the second mode is larger
(figures 2 and 3). This can be attributed to the fact that states of a given symmetry are
not necessarily orthogonal to each other (although they are orthogonal to the states of other
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symmetries). For example, consider the two Tz states with one phonon excitation:

[6os) = 1612(0,1,0,0,0,0)) = |} — lu)

(5.19)
e} = 1612(0,0,0,0,1,0)} = [v) — |w)

where

fey =1Tx'(0,1,0,0,0,0)) |} = |Tx'(0,0,1,0,0,0))
lv} =1Tx'(0,0,0,0,1,0)} lwy = |Tx'(0,0,0,0,0, 1)).

These states have an overlap {¢g,l¢g,) = (8/3)S2X1X2, which is only zero in the limits
of very strong coupling (to either mode) or weak coupling to one of the modes. Therefore,
orthogonal combinations of these two states should be taken. The transformation (5.16)
suggests that the correct states to use should (in un-normalized form) be

|@ge} = (I£} + nlv}) — ([u) + nlw))
by} = (mlt) ~ [0}) — (n|u) — |w)).

It can be verified that these combinations are indeed orthogonal when X2 = nXr, which
occurs when the two frequencies are equal. It is also possible to show (by substitution into
expression (5.9)) that the state |¢,,) has energy fw relative to the ground state. The state
Iy} has (absolute) energy

(5.20)

Eg =hol4B + S) — 2X2 + SX2C - 1xD)/B+ SU +XP).  (5.21)

This is identical to that predicted in Dunn (1989) for the single-mode T @ f; JT problem
for an effective coupling given by X, = Xr(I + n?)//Z, with the addition of an extra
(3/2)hw to allow for the zero-point energy of the additional mode. This is consistent with
the predictions of (5.18). The results for this energy level for the case B = 0.6 using
both the original and orthogonalized states are presented in figure 4. These results suggest
that it would have been better to work the whole problem in terms of the transformed §-
space, even for cases of unequal coupling, However, although possible, this would greatly
complicate the required calculations. Hence this has not been attempted in this paper. It is
interesting to note that in figure 3 (n = 0.9), where the magnitudes of the two couplings
are almost the same, all of the levels apart from the ground and inversion levels form pairs.
The overall pattern is very similar to that of the single-mode case.

It can be seen that in all three figures, there are some T, states that do not attain the
correct values of integral units of Ziw in the limit of weak coupling to both modes (Kt — 0).
This is again because of non-orthogonality of states of a given symmetry. In fact, for equal
frequencies, the T states with [ = | and « = 1 respectively approach the limits

Y@ +307)/5+37) and koG +4nD/G+50D).  (5.22)

These produce the values of 1.6hw and 2R respectively when n = 0. The same effects
of non-orthogonality also arose in the single-mede problem, in which the value of 1.6Rw
was also obtained for the T state with [ == 1 (figure 1 of Dunn 1989). In that paper, new
orthogonalized combinations of states were taken for the cases that did not attain the correct
weak-coupling limit. The new combinations did exhibit the correct behaviour (figure 2 of
Dunn 1989). Again, this has not been attempted in this paper as the main advantages in
obtaining an analytical method would be lost.
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200 T ¥ o T T T
15§ 4
2
=
~—
)
[=]
)
=
17}
05 | e
0.0 L I M ] L ] i
0.0 0.5 1.0 1.5 2,0

KTIhm

Figure 4. Energies of the T; one-phonon states with 57 = 0.6 for non-orthogonalized (short
dashed curves) and orthogonalized (full curves) states.

5.3.2, General results. More general results for # = 0.6 are shown in figures 5 and 6 when
the oscillator frequencies are not equal (which is the situation that is more likely to occur
in real T® 2t, JT systems). Figure 5 shows results for wr = » and w; = 0.8w, and figure 6
shows wr = 0.8 and w» = . Both sets of results are plotted in units of e (rather than
hwr or Rw;) to keep the overall scaling of the two problems the same. The results are
similar to the case of equal frequencies, but where the states separate into two sets that tend
to the two different values of siwyy in strong coupling.

" ]
pond horl
)
[=:}
&
[ =
L hez
0 0 i 1 1 ] M L
0.0 0.5 1.0 1.5 2.0

Krlhm

Figure 5. Energies as in figure 1 bat with » = 0.6, ey = w and an = 0.80.
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2.0 y T T T g T

Energy / fiy

0.0 . !

A 1 i
0.0 0.5 1.0 1.5 2.0
K; fhe

Figure 6. Energies as in figure 1 but with 5 = 0.6, o1 = 0.8w and en = w.

It mnst be noted that the results presented in these figures will exhibit non-orthogonality
effects in a similar way to the equal-coupling results, and again should be corrected
accordingly. However, these results are still useful in predicting the bebaviour in cases
of non-equal coupling. In particular, the inversion level is predicted to tend to the energy

§ =hor(1+ /) /(1 + n*/v?) (5.23)
where v = ay /et in the weak-coupling limit, which is intermediate between the two values
of hw when v #£ 1.

Calculations (O’Brien 1994) based on the method of Opik and Pryce (1957) suggest that,
when the frequencies of the two modes are not equal, four states should tend to the energy
heor and, four to the energy fiw,, but that the remaining 16 one-phonon states should attain
an energy that is a combination of these two values. The reason why this is not seen here
is probably because the H, part of the transformed Hamiltonian (2.6) has been neglected
in the calculations. In the single-mode problem, anisotropic effects mean that one-third of
the states should have a frequency » and the remaining two-thirds a frequency /(2/3)w.
Although our basic method predicts all states to have the frequency ko, when H, is included
via perturbation theory (Dunn and Bates 1989), two-thirds of the modes are predicted to
have an effective frequency that is a Taylor expansion of /(1 — 1/3)c. This suggests that
the single-mode results would be correct to infinite order in perturbation theory, The effect
of the inclusion of > has not been investigated for the two-mode problem.

For all parameter values, there is an accidental degeneracy between the states
[¥71(0,1,0,0,0,0)} and |¢¥(1,0,0,0,0,0)). These states are directly equivalent to
the states [¥]'(0, 1,0)) and [¢E(1, 0, 0)) respectively of the single-mode problem (Dunn
1989), which also exhibit an accidental degeneracy. The corresponding pair of states
[¥7(0,0,0,0,1,00) and |¢¥E(0,0,0,1,0,0)) for equivalent excitations of the second
(M = 2) mode are also accidentally degenerate.

6. Summary

This paper has presented the derivation of a set of symmetry-adapted excited states for the
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T& 2ty IT system by forming symmetry-adapted combinations of the infinite-coupling states
in the potential-energy surface minima in Q-space. This set has been shown to be complete
using group theory techniques. Analytical expressions for the normalization factors and
energics of these states have been obtained. Although the results are not exact due to
non-orthogonality of states of a given symmetry to other states of the same symmetry, they
form a useful basis for further calculations. In particular, first- and second-order reduction
factors, which are of interest in the T ® 2t JT system, can be evaluated. The resuits have
also been written in a form that indicates how the T ® 2tz JT problem can be extended to a
full multimode problem.

Acknowledgments

The authors are very pleased to acknowledge Professor F S Ham and Drs L I Hallam, S
Jamila, M C M O’Brien and V Z Polinger for many helpful and valuable discussions on
various aspects of the problem discussed here.

Appendix. Calculation of the number of states

The excited states in the infinite coupling limit are used as basis sets for this caiculation. A.

state localized in the kth potential energy minima can be written in a general form as
1x§; xP, v A1)

where |Xg‘>') represents the electronic part of the state and |X,(,f)) and Ith)) the two tz-type

phonon components of the state. The reducible representation of the vibronic states can
therefore be defined as the direct product of the representations for each part of the state

Fy=To® Fg‘” ® rg‘" (A2)
where
r‘l‘;’” =Ty ®Ty...to K factors (A3)

where K = Ny -+ Na. Ny =1+ m + » is the number of phonon excitations for the M =T
mode, and N, = o+ B+ ¥ is the number of phonon excitations for the other (M = 2) mode.
To calculate this direct product we require the characters of each representation. These are
given in Appendix 1 of Dunn (1989) for the orbital and t, phonon representations. Using
these results, the character of the total reducible representation of the vibronic states, Iyeq,
is then given by

Xeed(R) = Xorvit(R)Xe, (R) Xy, (R) (A4)

and hence the character table of I'4 for the Ty point group is

E 3, SIcy SIG 8¢,
Tea 4 (Edx,(E) 0 0 2, (P2, IC2) X0, (G301, (Ca)
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The number of vibronic states corresponding to each irreducible representation has been
calculated from the table above and from the reduction formula:

1&
a; =~ ¥ /(R xrea(R) (A5)
g k=l

where g; represents the number of times the imeducible representation I'; appears in the
reduction of Iy, g is the order of the group and x/(R)* are the characters of the imreducible
representations of the Ty group. The number of states calculated using group theory is given
in table 3; the results agree with the number of states generated by the phonon restrictions
presented for each set of states.
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