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I. Phys.: Condens. Matter 6 (1994) 5465-5484. Printed in the UK 

Analysis of the T 8 (e + 2t2) Jahn-Teller problem for a 
tetrahedral cluster 

P J Kirkt, C A  Bates and J L Dunn 
Department of Physics, The University, Nottingham NGI 2RD. UK 

Received 25 March 1994, in final form 29 April 1994 

Abstract. The T 0 (e + 2tz) Iahn-Teller (IT) system is studied analytically in strong mupling 
on a tetrahedral cluster model by adosfomtion methods. Using an energy minimizmon 
procedure, the system is shown to be localized in potentidenergy minima of teuagonal, trigonal 
or orthorhombic symmetry depending upon the relative strengths of the e and the hvo t2 mupling 
consmrr and on the quadratic coupling constants. The addition of an extra tz mode to the 
TO ( e t 4 )  system does nor introduce any extra potentid-energy minima although their respective 
depths are increased. Also derived are expressions for symmetry-adapted vibronic states and 
their energies for the T12tz JT system. Projection operator techniques are used starting from the 
e m  vibronic states in the infinite-coupling limit These results give an insight into the effect 
of including additional modes from the remainder of the eryswl into the rr effect. and hence 
indicate how a full multimode model can be fomulated. The calculation of symmetry-adapted 
excited states means that it will be possible to undertake analytical calculations of reduction 
factors. This in turn will provide a new insight into the derivation of improved models for 
explaining experimental data obtained on specific system. 

1. Introduction 

In the last few years, several papers have been published that derive the vibronic ground and 
excited states for certain Jahn-Teller (rr) vibronic systems in tetrahedral symmetry: Bates 
and Dunn (1989) and Dunn (1989) for the T@ e and T@ tz systems respectively; Hallam et 
al (1992) for the T @ (e + tz) system; and Jamila et U /  (1993) for the E 0 e system. These 
calculations have been based on a tetrahedral cluster model and have been evaluated using 
a transformation technique developed originally by Bates et al (1987). These calculations 
have been undertaken in order to obtain accurate basis states for the system and for the 
subsequent modelling of magnetic impurity ions in semiconductor materials. The active 
modes of this system are one of e and two of tl symmetry, and therefore the electrons of 
the impurity can couple to vibrational modes of these symmetries. However, only one of 
the t2 modes has been considered in most previous publications, as the inclusion of both 
modes is necessarily more complicated. 

A much more general problem in IT theory is to consider the coupling of an ion to 
the whole spectrum of phonon frequencies. This is frequently referred to as the multimode 
problem, and has been the subject of much theoretical work during the last 73 years or so. 
Much of this work has concentrated on the E @ e multimode problem in which the concept 
of a privileged mode was introduced (e.g. Sloncjewsld 1963, Fletcher 1972, O’Brien 1972, 
1983, Payne and Stedman 1983a. b, c). The multimode corrections to some of the Ham 
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reduction factors were described, for example, by Evangelou et af (1980). O’Brien (1972) 
also considered the general problem of an electronic TI or T2 triplet interacting with many 
e and tz modes simultaneously provided there was an accidental degeneracy between the 
e and t2 modes, but there appears to be virtually no work explicitly involving the T 8 tz 
multimode problem. A method for studying the multimode problem for the T 8 e  JT system 
was introduced by Ham (1965) and a particular model was devised by Stevens (1969) and 
developed further by Steggles (1977); this particular approach was summarized in Bates 
(1978). An analysis and discussion of all multimode models is given in Bersuker and 
Polinger (1989, sections 3.5, 4.6 and 4.7). In general, it may be possible to reduce the 
multimode problem to that of a single effective mode for some properties of the system 
(e.g. the potential energy), but for other properties inaccuracies are introduced. In particular, 
if wavefunctions (particularly those of the excited states) are required, the kinetic energy 
must be incorporated, and generally the problem cannot then be reduced to a single-mode 
problem. 

There is clearly a large gap between the simple cluster model used in the publications 
listed in the first paragraph and the more realistic multimode models. In this paper, we 
make an improvement in our simple cluster model by including coupling to the e mode 
and both t2 modes of the cluster. This represents a first step towards a multimode model, 
whilst retaining the considerable advantage of the analytical approach. Thus we study an 
ion having an orbital TI hiplet state coupled to the e- and two t2-type cluster vibrations. 
One of the tz modes is radial and the other is transverse (e.g. Bates 1978). It is assumed that 
the coupling to the vibrations is larger than other perturbations such as spin-orbit coupling. 
The transformation method presented originally in Bates et al (1987) is used. From the 
analysis, the positions of the potential-energy minima in the eight-dimensional Q-space are 
found. It will be shown that the addition of an extra tz mode does not introduce any extra 
minima The analysis gives descriptions of the T 8 e, T 8 2tz and T 8 (e + 2t2) IT systems. 

Whereas the positions of the minima for these systems could have been predicted from 
the multimode theories of O’Brien (1972), for example, explicit forms of the excited vibronic 
states could not be predicted from this source. The main advantage of the transformation 
method is that accurate analytical expressions for the ground and excited vibronic states can 
be obtained directly. This is not easy to do with other methods. Thus one of the major 
aims of this paper is to derive the equivalent sets of vibronic ground and excited states for 
the TI 8 2tz IT system to that for T@ t It will then be possible to use these to calculate the 
various reduction factors that will appear in any effective Hamiltonian for real systems. For 
example, it is hoped that the addition of the extra t2 mode may help in overcoming some of 
the difficulties arising in recent attempts at modelling the experimental results obtained for 
V3+ ions in GaAs (Ulrici et af 1985) and in InP (Clejaud et al 1987). Another problem 
is the interpretation of the optical spectrum observed for the GaP:V3+ system; Bates et nf 
(1990) described a model for this system in terms of a dominant tz mode coupling. 

P J Kirk et a1 

2. Definitions and the unitary transformation method 

In the cluster model of the JT effect for a T (1 = 1) ion coupled linearly to an e (Qe .  Q,) 
and two tz ( Q 4 ,  Q 5 ,  Qs; Q7, Q p ,  Qg) modes of the cluster, the interaction Hamiltonian has 
the form 

7.Im = VE(QSEO + Q 6 E d  + V T ( Q ~ T ~ Z  + QSTV + Q6Txy)  + Vz(Q7Tyr + QsTZx + Q 9 T . y )  

(2.1) 
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where VE is the e-type coupling constant and VT and V2 are the tz-type coupling constants. 
The definitions of the orbital operators Eo, Ty2. etc, are given in Bates (1978). The 
Hamiltonian describing the kinetic and elastic energies of the harmonic lattice is 

where j is summed over all eight components of the vibrational modes and where Pj is the 
momentum conjugate to Qj. This gives a total Hamiltonian 'H = 'Hi, + ' H i b .  

A unitary transfomtion 

is then applied to the Hamiltonian and gives the transformed Hamiltonian 

and 

f i 2  = 4 VdPa Qa - &PE e,) - ; & v ~ ( t d Q 4  4- ts f t6Q6)  

- $bv2(24Q-r + t 5 Q ~  +r$.Qs) - chpjLiOj2ajQj + e h m , ( b f b j ) .  (2.6) 
j j 

These equations have been written in second quantized form (Maier and Sigmund 1984) 
such that the orbital operators p and t are given by 

t t t t t 

t t t t t t 
pe = ClCl + czc2 - 2c30 p< = ClCl - czc2 

(2.7) 
t 4  = Czc3 + c3c2 ZS = c3cI + c1c3 t 6  = ClCZ + czc1 

where ct[O) = I x ) .  etc. with 10) the orbital vacuum state and I x )  the orbital state of the 
stated symmetry. As in Bates et al (1987). 7?2 contains terms representing coupling to 
excited phonon states while '??I contains only electronic orbital operators (and the zero- 
point energy). In strong coupling, which implies large a,, it is only necessiuy to consider 
f i l  when calculating the ground states of the system Thus it is appropriate to use the energy 
minimization procedure described by Bates et nl (1987) where the free parameters aj are 
chosen to minimize the potential energy of the transformed Hamiltonian f i l .  Following on 
from this analysis, it was found that vibronic ground and excited states of the system could 
be derived so that physical properties of the system could be deduced. 
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3. Analysis of ‘??* for b e a r  coupling 

The Hamiltonian 21 can be defined with respect to the vibronic basis set Ix; 0), Iy; 0) and 
Iz; O), where the second ‘0’ represents the phonon vacuum state. The corresponding matrix 
can be written in the form: 

P J Kirk et a1 

-Ae + -&A, + A -&(A6 + A9) &(As + A d ]  (3,1) 

where Aj = $!+j and A = $mR2 cj $a;. Also Ve = V, = VE, V, = VS = V6 = VT 
and V, = Vs = V9 = Vz with the oj similarly defined. It should be noted that the zero-point 
energy 

&(A6 + A9) -AB -&A, + A &(A4 + A7) [ &(As + As) &(A4 + A7) 2Ae + A  
GI = 

Ihoj  = $I% + ~ ( O T  + &I (3.2) 

can be ignored throughout the minimization procedure as it is a constant. The eigenvalues 
E of (3.1) are found by solving the resulting cubic equation following the procedures used 
in Bates et a1 (1987). 

The values of the uj that minimize the energy may be obtained by differentiating E 
with respect to the a j .  This gives eight simultaneous equations, which can be solved exactly 
(Kirk 1992) in terms of the effective coupling constants 

j 

K E  = - $ @ / ~ ~ w E ) ” ~ V E  KM = $ ( 3 h / 2 p o ~ ) ” ~ V ~  (M = T or 2). (3.3) 

The lowest energy (i.e. possible solutions that are minima) falls into the three categories, I, 
I1 and ID as follows: 

Category 1. These are solutions for the case when the ion is coupled to the e-type vibrations 
only. There are three minima in Q-space having energies 

E = EE = -4K3hw.  (3.4) 

This case is referred to as the T 63 e IT problem and the solutions are exactly the same as 
those obtained in Bates et a1 (1987). 

Category II. The ion is coupled to both sets of t Z  modes of vibration. In this case, there are 
four minima each with an energy given by 

E = Em = -4K;f3h@ -4K:f3h~.  (3.5) 

This is referred to as the T82tz  JT problem. This result could have been predicted from the 
original work of Opik and Pryce (1957) and from the formulae in O’Brien (1972). It can be 
seen that, as far as the positions of the energy minima are concemed, the T 8 tZ problem is 
the limiting case of the T632tz JT problem in which one of the coupling constants becomes 
zero (but see also section 5.3). In general, we note that, in a tetrahedron, as one of the 
tz modes is radial and the other is transverse, it is probable that the two modes couple to 
the ion with differing strengths. For example, it is expected that radial modes will couple 
more strongly than transverse modes as this direction is one in which the electric potential 
changes most rapidly with distance from the central nucleus. 
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Category III. In this case, the ion is coupled to the e-type and both tz-type vibrations of the 
cluster, giving six orthorhombic solutions for the T @ (e + 2tz) IT system with energies 

(3.6) E = E ~ T  = -KE/TIo, 2 - K+/E.rr - K:/TIy. 

These solutions are only true minima under special conditions involving quadratic coupling 
(particularly bilinear) terms. Again, this result is consistent with that of O’Brien (1972). 

From the expressions (3.4H3.6) for the energies, it can be seen that the system will appear 
to be 

(i) tetragonal if EE < EZT, i.e. for 

3Ki /hoe  > K+/hm f K i / h o z  

(ii) trigonal if EE Em, i.e. for 

(3.7) 

3KZlh% < K T / h m  + K;/f ioz  (3.8) 

(iii) orthorhombic if EEZT < EE and EZT, which is only possible under certain conditions 
of quadratic coupling (as discussed, for example, in the case of T @ (e + tz) by Hallam et 
al (1992)). 

The energy minimization procedure shows that the number of possible minima is 13, 
which is exactly the same as that obtained with coupling to only one of the tz modes. 
However, the depths of the minima are increased and the coordinates aj of the minima 
are in eight-, rather than fivedimensional Q-space. The ai for j = b’,~? 4.5 and 6 
are the same as those given in table 1 of Bates et a2 (1987) while the aj for j = 7 , 8  
and 9 are obtained from the corresponding values for j = 4 , 5  and 6 by replacing &- 
(= VT/TI&) by (= VZ/hpw;). By taking the calculated vdues of aj and substituting 
these into equations (2.5) and (2.6), it can be seen that ‘Fi, is proportional to K,?/hw, whereas 
‘Fiz is proportional to K,  (where K j  = KE, KT or Kz as appropriate). This justifies the 
approximation that. in the infinite-coupling limit (Kj + CO), the transformed Hamiltonian 
7% is small and can therefore be ignored. 

Although the particular results obtained above are not significant in themselves, they 
are important in a more general way because they are a first step to the more realistic and 
complex case of a multimode model for the IT effect involving e- and tz-type vibrations. In 
the b i t i n g  case of = %, it has been found that the positions of the potential-energy 
minima are in agreement with those of Opik and Pryce (1957) and subsequent workers (see, 
for example, Bersuker and Polinger 1989). As stated previously, the states obtained using 
this method have the advantage over previous approaches in that the states are automatically 
vibronic in nature owing to the presence of phonon operators in the unitary wansformation 
(2.3). 

4. The calculation of symmetry-adapted excited states for the TI 0 2tz JT system 

4.1. Basic ideas 

In the transformation method, the Qj and F) are written in second quantized form 

Q, = ( f t / ~ p o ~ ) l / ~ ( b j  + bf) p j  = i(hpoj/2)’”(bj - b;) (4.1) 



5470 

where b,! and bj are creation and annihilation operators. Similarly, the unitary transformation 
in second quantized form is 

P J Kirk et al 

(4.3) 

The ground states localized in trigonal wells are la; 0), Ib; 0), I C ;  0)  and Id: 0) where the 
' 0  denotes that all oscillators are in their ground states and where the orbital states take 
the forms 

(4.4) 

These states can then be transformed back to the original space by operating on them with 
the unitary transformation operator U = Uk appropriate to well k, with the values of CQ 
appropriate to the well in question. Thus the untransfonned state becomes 

IXP'; 0) = uklxg); 0) (4.5) 

and where Xg" refers to one of the four potential-energy minima. Although the ground states 
localized in the wells do not contain phonon excitations, the untransfomed states 1x6"; 0) 
do, owing to the presence of phonon operators in the unitary transformation. Therefore 
the untransformed states are automatically vibronic in nature and are often referred to as 
Glauber states (Judd and Vogel 1975). In the limit of infinite coupling, the system performs 
small harmonic oscillations around each minimum. In a similar way, a set of localized 
untransformed excited vibronic states IXgY;4'5'"6"7'8#9V) can be defined, where 4', etc, 
refer to I tz-mode Q4 phonon excitations, etc. 

In the finitecoupling regime, these states are not good eigenstates of the system, as 
they are neither orthogonal to each other nor do they have cubic symmetry. It is therefore 
necessary to construct linear combinations of the states that have cubic symmetry and are 
orthonormal. Cubic combinations have been obtained using projection operator techniques, 
similar to those used for the E 8 e (Jamila et d 1993). T 0 tz (Dum 1989) and T 0 (e + tz) 
(Hallam er al 1992) IT systems. A discussion concerning the orthogonality of these states 
is given in section 5.3. 

4.2. Projection operator Iechniques 

Using the appropriate group-theoretical projection operators, it is possible to take a set of 
non-symmetrized states and produce a set of symmetry-adapted states. (A review of these 
techniques is given in Hallam et ~l (1992)J To calculate the effect of one of the elements 
of a particular projection operator, the transformation properties of both the electronic and 
phonon parts of the states are required. In this connection, we note that, as this papcr is 



Analysis of the T @ (e + 2 t2 )  nproblem for a tetrahedral clusfer 5471 

modelling an impurity TI ion, the electronic states Ix), ly) and lz) transform under the 
symmetry operations of the Td group in the same way as the angular momentum operators 
(Iz, Z y ,  lz) and not as the Cartesian operators ( x ,  y ,  2).  Using these vansformation properties, 
we obtain results such as 

JC:la'; 4f5m6"7c8~9y) = -[a'; (-4)"Sm(-6)'(-7)Y88(-9)m) 
- - -(-l)'f"+Q+Y la'; 4"Sm6'7Y@gu) (4.6) 

where JC; is a symmetry operation of the T,j group. Similar results can be generated for 
each of the other elements of the group. 

As shown in appendix A of Hallam et al(1992). if a state of arbitrary symmetry is acted 
upon by a set of projection operators for a specific irreducible representation, then either 
the resulting states are zero, meaning that there is no state of this particular symmetry, 
or a basis state for the irreducible representation is generated. Owing to the symmetry 
properties of the infinite-coupling excited states. it is only necessary to act on the states of 
one well to produce a complete and distinct set of symmetry-adapted excited states provided 
all the projection operators for that irreducible representation of the Td group are used. This 
approach has been applied to all the irreducible representations of the Td group in order to 
derive all the vibronic states I+:) of the system having a symmetry r and labelled by the 
index i (= 1-30); details are given in Kirk (1992). The complete set of 30 states is given 
in table 1 ,  and restrictions on particular phonon occupation numbers necessary to produce 
both states of the desired symmetry and each state once only in table 2. The vibronic states 
are written in terms of the functional states 

I T x ' ( i , m , n , a , p . y ) )  = Ic'+(-l) m+n+B+Yd' - (-l)"+l+a+Yar - (-l)'+m+u+Bb'; 

4'5m6"7u889Y) (4.7) 

4'Sm6"7"8@9Y) (4.8) 

4'Y6"7" SB 9Y) (4.9) 

ITy'(l, m ,  n , a ,  6 ,  y ) )  = Ib'+ (-l)'+"*+yd' - (-1) m+l+cr+Bc' - ( - l ) " + m + ~ + B ~ ! ;  

ITz'(l, m, n ,  a, 0, y ) )  = la'+ (-l)'+m*a+Bd' - (-l)"+f+n+Yc' - (-l)"+"'+y+Bb'; 

and 

IE ' ( l ,m,n ,a ,B ,y) )  = Ia'+(--l) m+n+B+Yb' + (-~)o+f+u+yc~ - (-l)f+m+u+Bd!. 

4'5m6n7U8f19Y). (4.10) 

Note that the states with i = 1 ,2 ,3  and no phonon excitations give the cubic TI triplet 
ground states of the system and the zero-phonon state with i = 20 gives the associated A2 
inversion level. 

In order to check that the reshictions on the phonon indices given in table 1 are those 
which define each state once and once only, the number of vibronic states expected for each 
representation has been calculated by group-theoretical techniques. The results are given in 
the appendix and table 3. The number of states predicted in table 2 can then be shown to 
be consistent with these results. 
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Table 2 Resuictions on the indices. 

5413 

Svmmetn i Resuictions 

TI 1.2.3 m = n , p  = y 
m = n. p > y 4. 5.6 

7. 8.9 m > n  

T2 IO, 11. 12 m = n. p > y 
13, 14. 15 m > n 

E 16, 17 i > m , /  > n 
18, 19 1 = m = n .  (I > p ,  (I 2 y 

A2 U) 1 = m  = n . a  b p b y 

1 > m = n , a # p  = y  
1 > m = n . p  z y 
1 = n  > m . a  = p  # y 
/ = n  > m . a  z y 

21 1 > m , l b n . ( I  = p = y  
22 
23 
24 
25 

A! 26 1 = m  =",a > B > y 
27 1 > m , m = n . p >  y 
28 
29 
30 l > m > n  

1 > m . m  # n . Z  = n ,  a ic y,a > y . p  # Y 
1 > m . m  # n , t  =n, (I = & a  f y .6  # y 

Table 3. Number of vibronic states of each irreducible representation. Row (A) applies if N T / ~  
and N2/3 are integral; otherwise row (B) applies. 

K even K odd 

NT even N ~ o d d  Nr even NT odd 
N2 even N2 odd Nz odd Nz even 

R = N 2  R t 2 - + N 2 + 1  R + 2 + N z + l  R = N z  
S = N T  R + I + N 2 + 2  R + l + N 2 t 2  S t I d N T t 2  

S + I + N r + Z  S = N r  S + 2 +  N T + I  

4.3. The normalization factors 

The basis states given in table 1 are not normalized. Normalized symmetry-adapted excited 
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states can be written in the general form 

P J Kirk et a1 

I $ : ( L m , n , w B , y ) )  = N i ( l , m , n , c y , B , y ) l ~ : ( [ , m , n , c u , B , y ) ) .  (4.11) 

In order to evaluate Ni, the calculation of the overlaps (#I@) is required. This in turn 
requires the calculation of the overlaps of the excited states in infinite coupling. It is 
necessary therefore to evaluate the expression 

where kl and kz label states from different potential-energy minima (i.e. ‘U ’ ,  ‘b’, ‘c’ or ‘d’) 
and X$? refers to the phonon state in well kl, etc. On substitution of the U values and 
after using the identity 

exp[k(bj t - bj)]  = exp(-ik2) exp(kbJ) exp(-kbj) (4.13) 

this overlap may be simplified by 

where Dy) = C: - C: and the sum j is over all relevant phonon contributions. The 
quantity Szl is defined by 

and takes the values 

when dealing with the T @ 2t2 rr system. Thus (4.14) reduces to evaluating the phonon 
overlap 

( 4‘5”’6“7‘T389Y I exp ( (4.17) 

As the phonon operators for the different modes commute, it is possible to separate this 
expression into a product of the overlaps for each of the individual modes. For example, 
for the Q6 mode, we have, on expansion of the exponentials, 

(4.18) 
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On substitution of the values of the D:*,") into the latter expression, the phonon overlaps 
can be defined in terms of the function 

where 

XM 4 K u / 3 f i ~ ~  (4.20) 

with M = T when dealing with overlaps of the modes Q4. Qs, QS and M = 2 when 
dealing with overlaps of the modes Q7. Q8, Qg (this notation will be used throughout the 
rest of this paper). 

The orbital overlaps are straightforward to calculate and are given by the expression 

(4.21) 

Hence, after much algebra, overlaps for the functional states (4.7) to (4.10) can be 
determined. In particular, 

(Tx'(l, m ,  n, a, B. y) lTx'(p,  q ,  r.  A,  U ,  T)) = @ p ~ ~ 4 m ~ m ~ u ~ ~ p o ~ y r  

(4.22) 1 
1 

(-lfm+"+pc)'S;-(q, r,  m, n)s;@. 5, P, Y ) ~ ~ I ~ , A  
-(-l)P+"+*+yS;-(p, r, 1 ,  n)$(A, T, 01, y)&,8pC 

-(-l)p+m+A+oS;(p, 4.1, m)s;(A, 0, a, p)&,Sy.r 

[ +(-l)'+m+a+pS+(~, 4.1, m)S$, U, 01, B)&d,,  

W'U. m, n , a ,  B, y) lE'(p.  q, r,  A,  U, r ) )  = 4~pl~qpm~m~uA~#o~yi 

(4.23) 
(- i)m+r+#+r~' d q .  r, m ,  W;(u, t. B ,  V)&I&A 

- $S*[ +(-l)'+'+u+rS;(p, r, I ,  rI)s;(A, T, a, y)G,,Sg, 

where 

(4.W 

It is a simple matter to determine the required normalization factors from these overlap 
functions. 

The functions Sh are related to the functions SM that appear in the calculations of the 
overlaps for the T@t JT problem by the relationship S = -(4/3)S'. It is possible to see how 
the results above arise in relation to the single-mode result @unn 1989) by tracing the wells 
from which each term arises. For example, the terms including 6,rS.~ come from overlaps 
between wells 'ab', 'ba', 'cd' and 'dc'. The single-mode contribution for these wells is 
-(4/3)(-l)"+"S'(q, r, m ,  n)&l. This must simply be multiplied by a second singlemode 
overlap function with all labels permuted to the equivalent ones for the second mode, but 
excluding the extra factor of -(4/3). This is because the one-mode function contribution 
includes a factor of -(1/3) for the orbital overlaps and a factor of 4 because the term is 
a sum over four different well combinations. Both considerations should only be included 
once in a multi-mode problem. Such an analysis is useful, as it clearly indicates how results 
could be obtained for a full multimode model. 

j+k-h-i SkCh, i, j ,  k )  = X, F d h ,  j ) F d i , k ) .  
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(5.11) 

From these, the state definitions in table 1 and the normalization factors derived from the 
functional overlaps (4.22) and (4.23), it is a relatively straightforward procedure to calculate 
the energies of all of the vibronic states. 

5.2. Energies of the ground stares 

It is possible to Write down much simpler expressions for the energies of the TI vibronic 
ground state and its associated inversion level, as neither contain any phonon excitations. 
After substitution of the normalization factors and relevant functions, the results are found 
to be 

E 2  = i ( h w  + h y )  - 4 (3 + 2) (-) 
9 Rw 

and 

(5.13) 

(5.14) 

respectively. These results have an identical form to those of T@ t (Dunn and Bates 1989) 
provided K? f h w  is replaced by (K? f h w  + Kz fhm)  and S, by SU. However, it must be 
stressed that these equivalences are not true in general. 
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5.3. Results for the excited states 

The energies of aU vibronic states can be evaluated directly from the formulae quoted in 
the tables, for any given input parameters. We present here the results for some specific 
choices of parameters. For simplicity, only s t a b  with zero and one phonon excitation will 
be considered, although the results are valid for any number of phonon excitations. It is 
also useful to define a ratio of coupling strengths 

v = Vz/Vr = ( K Z / K T ) ( W ~ / ~ / ~ .  

P J Kirk et al 

(5.15) 

5.3.1. Care of equal frequencies. The simplest choices of parameters are when the 
frequencies of the two modes are equal (y. = 0~ = 0). Figures 1, 2 and 3 show the 
calculated energies, relative to the TI ground state, with the parameter taking values 0.1, 
0.6 and 0.9 respectively. 

s 
f 

K,lho, 

Figure 1. Energies relative to lhe T1 ground state for q = 0.1 and wy = an = o with the key: 
T I ,  full curves, T2, short dashed curves; E stales and their accidentally degenerate TI stales, 
medium dashed curves: A2. long dashed C U N ~ S .  

When considering the special cases for which the frequencies of the two modes are 
equal. it is useful to make an orthogonal transformation in Q-space 

qi = (Qt + VQit3)/(1+ v')''~ (5.16) 

for i = 4.5.6 such that, when the coupling to the e modes is neglected. the Hamiltonian 
7f = 7ijnt + 7ivib given by (21) and (2.2) becomes (O'Brien 1994) 

qit3 = ( v Q ~  - Qit3)/(1+ v')'' 

(5.17) 

where p j  is the momentum conjugate to e.  This indicates that the results obtained should 
be identical to those of the singlemode T@ t2 problem with an effective coupling constant 

(5.18) 

2 l/2 X = VT(1+ V ) Cq4Tyz + q5Tu f q6Tq) f C ( P ; / P j  + Pj$qj) 
j 

v; = VT(1 + q Z ) ' / Z  
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Figure 2. Energies as in figure 1 but with I I  = 0.6. 

KTlhl0 

Figure 3. Energies as in figure 1 but with I I  = 0.9. 

rather than V,, and with the addition of a set of energy levels due to an uncoupled tz mode. 
The levels due to the uncoupled mode should include a set of levels at energy Ro relative 
to the ground state, plus a TI (i.e. Az. @ T2) level that varies in energy from Z o  in weak 
coupling to Ro in strong coupling, such that it remains Eo above the A2 inversion level. 

Figure I ( q  = 0.1) does show both a pattern of levels for the M = T modes that is 
very similar to that for the singlemode T@ tz problem (figure 2 of Dunn 1989). plus a set 
of levels due to the uncoupled mode as required. However, the levels that should be at Ro 
show noticeable deviations from this value when the coupling to the second mode is larger 
(figures 2 and 3). This can he attributed to the fact that states of a given symmetry are 
not necessarily orthogonal to each other (although they are orthogonal to the states of other 



5480 

symmetries). For example, consider the two T2 states with one phonon excitation: 

P J Kirk et a1 

I @ Q s )  = l @ ~ ( o ~  l,o,o,ov 0)) = 12) - b) 
l@Qs) = I&(o, o,o,o, 1~0)) E Iv) - Iw) 

(5.19) 

where 

12) = ITX'(0, 1,0,0.0,0)) 

] U )  = ITx'(O,O,O, 0,l .  0)) 

lu) = ITx'(O,O, 1,0,0,0)) 

Iw )  = ITx'(O,O,O, o,o, 1)). 

These states have an overlap (@Ql[+Qll) = ( 8 / 3 ) S u x ~ X ~ ,  which is only zero in the l i t s  
of very strong coupling (to either mode) or weak coupling to one of the modes. Therefore, 
orthogonal combinations of these two states should be taken. The transformation (5.16) 
suggests that the correct states to use should (in un-normalized form) be 

I@qJ = (It) + d v ) )  - ([U) + 77lw)) 
I&*) = (?It) - 14) - ( V I 4  - Iw)). 

(5.20) 

It can be verified that these combinations are indeed orthogonal when X Z  = ~ X T ,  which 
occurs when the two frequencies are equal. It is also possible to show (by substitution into 
expression (5.9)) that the state has energy ho relative to the ground state. The state 
I@,,,) has (absolute) energy 

Eql = fto[4(3 + $) - %XF + StX:(i  - $ X $ ) ] / [ 3  + &(I + X $ ) ] .  (5.21) 

This is identical to that predicted in Dunn (1989) for the singlemode T@ tz IT problem 
for an effective coupling given by Xk = XT(I + rj')1/2, with the addition of an extra 
(3/2)hw to allow for the zero-point energy of the additional mode. This is consistent with 
the predictions of (5.18). The results for this energy level for the case 77 = 0.6 using 
both the original and orthogonalized states are presented in figure 4. These results suggest 
that it would have been better to work the whole problem in terms of the transformed Q- 
space, even for cases of unequal coupling. However, although possible, this would greatly 
complicate the required calculations. Hence this has not been attempted io this paper. It is 
interesting to note that in figure 3 (q = 0.9). where the magnitudes of the two couplings 
are almost the same, aU of the levels apart from the ground and inversion levels form pairs. 
The overall pattern is very similar to that of the single-mode case. 

It can be seen that in all three figures, there are some TI states that do not attain the 
correct values of integral units of ho in the limit of weak coupling to both modes (KT + 0). 
This is again because of non-orthogonality of states of a given symmetry. In fact, for equal 
frequencies, the TI states with 1 = 1 and CY = 1 respectively approach the limits 

Z o ( 4  + 377')/(5 + 377') and Z w ( 3  + 4q2)/(3 + 5q2). (5.22) 

These produce the values of 1.&o and Z w  respectively when q = 0. The same effects 
of non-orthogonality also arose in the single-mode problem, in which the value of 1 .&U 

was also obtained for the TI state with I = 1 (figure 1 of Dunn 1989). In that paper, new 
orthogonalized combinations of states were taken for the cases that did not attain the correct 
weak-coupling l i t  The new combinations did exhibit the comect behaviour (figure 2 of 
Dunn 1989). Again, this has not been attempted in this paper as the main advantages in 
obtaining an analytical method would be lost. 
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Figure 4. Energies of the Tz one-phonon states with q = 0.6 for non-onhogonalized (shon 
dashed curves) and orthogonalized (full curves) stam. 

- 

5.3.2. General results. More general results for q = 0.6 are shown in figures 5 and 6 when 
the oscillator frequencies are not equal (which is the situation that is more likely to occur 
in real T@ 2tz IT systems). Figure 5 shows results for q. = o and 02 = 0.80, and figure 6 
shows q. = 0.80 and 02 = O. Both sets of results are plotted in units of A o  (rather than 
A@ or Aw) to keep the overall scaling of the two problems the same. The results are 
similar to the case of equal frequencies, but where the states separate into two sets that tend 
to the two different values of  OM in strong coupling. 
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\\ 
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Figure 6. Energies ar in figure 1 but with 0 = 0.6, oy = 0.80 and 02 = o 

It must be noted that the results presented in these figures will exhibit non-orthogonality 
effects in a similar way to the equal-coupling results, and again should be corrected 
accordingly. However, these results are still useful in predicting the behaviour in cases 
of non-equal coupling. In particular, the inversion level is predicted to tend to the energy 

(5.23) 
where U = 0~ /y. in the weak-coupling l i t ,  which is intermediate between the two values 
of h o  when U f 1. 

Calculations (O’Brien 1994) based on the method of Opik and Pryce (1957) suggest that, 
when the frequencies of the two modes are. not equal, four states should tend to the energy 
h m  and, four to the energy h R ,  but that the remaining 16 one-phonon states should attain 
an energy that is a combination of these two values. The reason why this is not seen here 
is probably because the 7& part of the transformed Hamiltonian (2.6) has been neglected 
in the calculations. In the single-mode problem, anisotropic effects mean that one-third of 
the states should have a frequency o and the remaining two-thirds a frequency J(2/3)w. 
Although our basic method predicts all states to have the frequency ho, when f i z  is included 
via perturbation theory (Dunn and Bates 1989), two-this  of the modes are predicted to 
have an effective frequency that is a Taylor expansion of J(l - 1/3)w. This suggests that 
the single-mode results would be correct to infinite order in perturbation theory. The effect 
of the inclusion of ?& has not been investigated for the two-mode problem. 

For all parameter values, there is an accidental degeneracy between the states 
[@Tl(O, 1,0,0,0,0)) and I@:&, O,O, O,O,O)). These states are directly equivalent to 
the states I@TT’(O, 1,O)) and /@;(I, 0,O)) respectively of the single-mode problem @unn 
1989), which also exhibit an accidental degeneracy. The corresponding pair of states 
I@T1(O. 0.0.0, 1.0)) and I@k(O, 0.0,1,0,0)) for equivalent excitations of the second 
(44 = 2) mode are also accidentally degenerate. 

6 = hm(1-F s2/v2)/(1 -k s 2 / v 3 )  

6. Summary 

This paper has presented the derivation of a set of symmetry-adapted excited states for the 
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TrB2tz 1T system by forming symmehy-adapted combinations of the infinitecoupling states 
in the potential-energy surface minima in @space. This set has been shown to be complete 
using group theory techniques. Analytical expressions for the normalization factors and 
energies of these states have been obtained. Although the results are not exact due to 
non-orthogonality of states of a given symmetry to other states of the same symmetry, they 
form a useful basis for further calculations. In particular, first- and second-order reduction 
factors, which are of interest in the T @ 2tz JT system can be evaluated. The results have 
also been written in a form that indicates how the T @ 2tz IT problem can be extended to a 
full multimode problem. 
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Appendix. Calculation of the number of states 

The excited states in the infinite coupling limit are used as basis sets for this calculation. A 
state localized in the kth potential energy minima can be written in a general form as 

where lXgy) represents the electronic part of the state and IX:)) and IY:)) the two tz-type 
phonon components of the state. The reducible representation of the vibronic states can 
therefore be defined as the direct product of the representations for each part of the state 

rvib = ro @I ry @I riW (W 

where 

r(? = rc rG.. .to K factors (A3) 

where K = NT + Nz.  NT = I + m + n is the number of phonon excitations for the M = T 
mode, and N2 = a+@+ y is the number of phonon excitations for the other (A4 = 2) mode. 
To calculate this direct product we require the characters of each representation. These are 
given in Appendix 1 of Dunn (1989) for the orbital and t2 phonon representations. Using 
these results, the character of the total reducible representation of the vibronic states, rd, 
is then given by 

4 

X d R )  = Xmbit(R)Xtx(R)Xh(R) (A4) 

and hence the character table of rd for the T,j point group is 
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The number of vibronic states corresponding to each irreducible representation has been 
calculated from the table above and from the reduction formula: 

where a, represents the number of times the irreducible representation rj appears in the 
reduction of rd. g is the order of the group and x'(R)' are the characters of the irreducible 
representations of the Td group. The number of states calculated using group theory is given 
in table 3; the results agree with the number of states generated by the phonon restrictions 
presented for each set of states. 
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